2025/05/18 02:21

1/6 Python Code

Python Code

This a hub page for Python code linked to other pages using the section tag.

Example of how to embed a code section in another page in DokuWiki:
{ {section>:python code#user string&noheader&nofooter} }

Remove the spaces between the curly brackets.

Any script with dependencies should use inline script metadata.

Create Button Flag

Python Create Button Flag

asi_create_button_flag.py

create button code(at: int home: int joystick: int

zero _halt: int -> int:
at range "Must be in the range 0-3."
home range "Must be in the range 0-3."
joystick range "Must be in the range 0-3."
zero halt zero halt "Must be 0 or 1."

button code

bit masks

BITMASK AT # 00000011

BITMASK HOME # 00001100

BITMASK JS # 00110000

BITMASK ZERO # 11000000

set bits

button code & ~BITMASK AT

button code |= at & BITMASK AT

button code & ~BITMASK HOME

button code | home & BITMASK HOME

button code & ~BITMASK]S

button code | joystick & BITMASK JS

button code & ~BITMASK ZERO

button code | zero_halt & BITMASK ZERO

button code

main

Applied Scientific Instrumentation - https://asiimaging.com/docs/

https://packaging.python.org/en/latest/specifications/inline-script-metadata
https://asiimaging.com/docs/_export/code/python_code?codeblock=0

Last update: 2025/05/15 03:28 python_code https://asiimaging.com/docs/python_code

button code = create button code(at=1, home=1
print(button code
prints 5

1t _name_ “ main_ ":
main

Parse Button Flag

Python Parse Button Flag

asi_parse_button flag.py

the value returned from EXTRA M?
button flag byte = 127

bit masks

mask at 0x03 # 00000011
mask home Ox0C # 000011006
mask js 0x30 # 00110000

mask _zero = 0xCO # 11000000

get the button states from button flag byte

btn at button flag byte & mask at

btn_home button flag byte & mask home 2
btn js button flag byte & mask js 4
btn zero button flag byte & mask zero 6

show the results in decimal and binary
print(f"{button flag byte = } (binary {button flag byte :08b})"
print(f"{btn_at = } (binary {btn_at:02b})"

print(f"{btn home } (binary {btn home:02b})"

print(f"{btn_js = (binary {btn js:02b})"

print(f"{btn zero } (binary {btn zero:02b})"

- 1

console output:

button flag byte = 127 (binary 01111111)
btn at = 3 (binary 11)

btn _home 3 (binary 11)

btn _js = (binary 11)

btn zero = 1 (binary 01)

| IOV |

https://asiimaging.com/docs/ Printed on 2025/05/18 02:21

https://asiimaging.com/docs/_export/code/python_code?codeblock=1

2025/05/18 02:21 3/6 Python Code

Status Byte

Python Status Byte

asi_status_byte.py

/// script
dependencies = ["pyserial>=3.5"]
#///
serial
enum Flag, auto

StatusByte(Flag):
The Status Byte returned by the RDSBYTE (RB) command.
The value parameter should be an 8-bit int, 0-255.
00000001 <- Bit O is 1, commanded move in progress.
COMMANDED MOVE = auto
AXIS ENABLED = auto
MOTOR ACTIVE = auto
JS KNOB ENABLED = auto
MOTOR RAMPING = auto
MOTOR RAMPING UP = auto
AT UPPER LIMIT = auto
AT LOWER LIMIT = auto

main -> None:
use an empty string for MS2000 (card address = "")
card address "1

which axes to query (for a single axis use: axes = ["X"])
axes byte len is the number of bytes that need to be read
for RDSBYTE

axes IIXII IIYII
axes str = " ".join(axes
axes byte len = len(axes) + 3 # 3 bytes for ':', "\r', and
1 \nl
serial.Serial ("COM5", 115200, timeout=1 serial port:

query the controller for the status byte of each axis
command f"{card address}RB {axes str}\r"

serial port.write(bytes(command, encoding="ascii"
response = serial port.read(axes byte len

report and check for errors
f"Send: \"{command[:-1]}\""
f"Recv: \"{response}\" (interpreted as ASCII)"
f"Number of bytes to read: {axes byte len}\n"

Applied Scientific Instrumentation - https://asiimaging.com/docs/

https://asiimaging.com/docs/_export/code/python_code?codeblock=2

Last update: 2025/05/15 03:28 python_code https://asiimaging.com/docs/python_code

b"N" response:
"Error in response..."

view as bytes
response bytes byte byte response
f"{response bytes = } (raw bytes)\n"

get the status byte for each axis and skip the first
byte (':")
status bytes response| i i range(1l, len(axes) +
1
f"{status bytes = } (decimal)"

create a dictionary that maps uppercase axis names to
status bytes
status bytes dict axis.upper(): StatusByte(status byte
axis, status byte zip(axes, status bytes, strict=True
f"{status bytes dict = }\n"

check the status of each axis
axis axes:
status byte = status bytes dict.get(axis.upper
check a single flag
is at upper limit = StatusByte.AT UPPER LIMIT
status byte
check multiple flags
is js and axis enabled = StatusByte.JS KNOB ENABLED |
StatusByte.AXIS ENABLED status byte
check if one flag is True and the other is False
is motor _on and not cmd move = StatusByte.MOTOR ACTIVE
status byte StatusByte.COMMANDED MOVE status byte
f"{axis} Axis Status: {status byte.value:08b}"
print the status byte in binary
f"{status byte = }"
f"{is at upper limit = }"
f"{is js and axis enabled = }"
f"{is motor on and not cmd move = }\n"

__main__ ":

__nhame
main

User String

Python User String

https://asiimaging.com/docs/ Printed on 2025/05/18 02:21

2025/05/18 02:21 5/6 Python Code

asi_user _string.py

/// script

dependencies = ["pyserial>=3.5"]
#///

import serial

def main -> None:
the input string to send to the controller
user string "abcdefghij1234567890"
save settings = True

use an empty string for MS2000 (card address = "")
card address "2

error checking
1T len(user string 20:
raise Exception("Max stored string length is 20."

open the serial port and send characters to the controller
with serial.Serial ("COM4", 115200, timeout=1) as serial port:
clear the current stored string
serial port.write(bytes(f"{card address}BU Y-\r"
encoding="ascii"
serial port.readline

send the input string to the controller
for character in user string:
serial port.write(bytes(f"{card address}BU
Y={ord(character)}\r", encoding="ascii"
serial port.readline

print the stored string and check to see if it's the
same as the input string
serial port.write(bytes(f"{card address}BU Y?\r"
encoding="ascii"
response = serial port.readline().decode().rstrip("\r\n"
1T response user_string:
print(f"Successfully stored the input string =>
{response}"
1T save settings:
serial port.write(bytes(f"{card address}SAVESET
Z\r", encoding="ascii"
serial port.readline
print("Settings saved to the controller using
SAVESET Z."
else:
print(f"Error: expected {user string} but got
{response} instead!"

1t name_ " main_ ":

Applied Scientific Instrumentation - https://asiimaging.com/docs/

https://asiimaging.com/docs/_export/code/python_code?codeblock=3

Last update: 2025/05/15 03:28 python_code https://asiimaging.com/docs/python_code

main

From:
https://asiimaging.com/docs/ - Applied Scientific Instrumentation

Permanent link:
https://asiimaging.com/docs/python_code

Last update: 2025/05/15 03:28

https://asiimaging.com/docs/ Printed on 2025/05/18 02:21

https://asiimaging.com/docs/
https://asiimaging.com/docs/python_code

	Python Code
	Create Button Flag
	Parse Button Flag
	Status Byte
	User String

