
2025/05/18 02:21 1/6 Python Code

Applied Scientific Instrumentation - https://asiimaging.com/docs/

Python Code

This a hub page for Python code linked to other pages using the section tag.

Example of how to embed a code section in another page in DokuWiki:
{ {section>:python_code#user_string&noheader&nofooter} }
Remove the spaces between the curly brackets.

Any script with dependencies should use inline script metadata.

Create Button Flag

Python Create Button Flag

asi_create_button_flag.py

def create_button_code(at: int = 0, home: int = 0, joystick: int =
0, zero_halt: int = 0) -> int:
 assert at in range(4), "Must be in the range 0-3."
 assert home in range(4), "Must be in the range 0-3."
 assert joystick in range(4), "Must be in the range 0-3."
 assert zero_halt == 0 or zero_halt == 1, "Must be 0 or 1."

 button_code = 0

 # bit masks
 BITMASK_AT = 0x03 # 00000011
 BITMASK_HOME = 0x0C # 00001100
 BITMASK_JS = 0x30 # 00110000
 BITMASK_ZERO = 0xC0 # 11000000

 # set bits
 button_code &= ~BITMASK_AT
 button_code |= at & BITMASK_AT

 button_code &= ~BITMASK_HOME
 button_code |= (home << 2) & BITMASK_HOME

 button_code &= ~BITMASK_JS
 button_code |= (joystick << 4) & BITMASK_JS

 button_code &= ~BITMASK_ZERO
 button_code |= (zero_halt << 6) & BITMASK_ZERO

 return button_code

def main():

https://packaging.python.org/en/latest/specifications/inline-script-metadata
https://asiimaging.com/docs/_export/code/python_code?codeblock=0

Last update: 2025/05/15 03:28 python_code https://asiimaging.com/docs/python_code

https://asiimaging.com/docs/ Printed on 2025/05/18 02:21

 button_code = create_button_code(at=1, home=1)
 print(button_code)
 # prints 5

if __name__ == "__main__":
 main()

Parse Button Flag

Python Parse Button Flag

asi_parse_button_flag.py

the value returned from EXTRA M?
button_flag_byte = 127

bit masks
mask_at = 0x03 # 00000011
mask_home = 0x0C # 00001100
mask_js = 0x30 # 00110000
mask_zero = 0xC0 # 11000000

get the button states from button_flag_byte
btn_at = button_flag_byte & mask_at
btn_home = (button_flag_byte & mask_home) >> 2
btn_js = (button_flag_byte & mask_js) >> 4
btn_zero = (button_flag_byte & mask_zero) >> 6

show the results in decimal and binary
print(f"{button_flag_byte = } (binary {button_flag_byte :08b})")
print(f"{btn_at = } (binary {btn_at:02b})")
print(f"{btn_home = } (binary {btn_home:02b})")
print(f"{btn_js = } (binary {btn_js:02b})")
print(f"{btn_zero = } (binary {btn_zero:02b})")

console output:
button_flag_byte = 127 (binary 01111111)
btn_at = 3 (binary 11)
btn_home = 3 (binary 11)
btn_js = 3 (binary 11)
btn_zero = 1 (binary 01)

https://asiimaging.com/docs/_export/code/python_code?codeblock=1

2025/05/18 02:21 3/6 Python Code

Applied Scientific Instrumentation - https://asiimaging.com/docs/

Status Byte

Python Status Byte

asi_status_byte.py

/// script
dependencies = ["pyserial>=3.5"]
///
import serial
from enum import Flag, auto

class StatusByte(Flag):
 """
 The Status Byte returned by the RDSBYTE (RB) command.
 The value parameter should be an 8-bit int, 0-255.
 00000001 <- Bit 0 is 1, commanded move in progress.
 """
 COMMANDED_MOVE = auto()
 AXIS_ENABLED = auto()
 MOTOR_ACTIVE = auto()
 JS_KNOB_ENABLED = auto()
 MOTOR_RAMPING = auto()
 MOTOR_RAMPING_UP = auto()
 AT_UPPER_LIMIT = auto()
 AT_LOWER_LIMIT = auto()

def main() -> None:
 # use an empty string for MS2000 (card_address = "")
 card_address = "1"

 # which axes to query (for a single axis use: axes = ["X"])
 # axes_byte_len is the number of bytes that need to be read
for RDSBYTE
 axes = ["X", "Y"]
 axes_str = " ".join(axes)
 axes_byte_len = len(axes) + 3 # 3 bytes for ':', '\r', and
'\n'

 with serial.Serial("COM5", 115200, timeout=1) as serial_port:
 # query the controller for the status byte of each axis
 command = f"{card_address}RB {axes_str}\r"
 serial_port.write(bytes(command, encoding="ascii"))
 response = serial_port.read(axes_byte_len)

 # report and check for errors
 print(f"Send: \"{command[:-1]}\"")
 print(f"Recv: \"{response}\" (interpreted as ASCII)")
 print(f"Number of bytes to read: {axes_byte_len}\n")

https://asiimaging.com/docs/_export/code/python_code?codeblock=2

Last update: 2025/05/15 03:28 python_code https://asiimaging.com/docs/python_code

https://asiimaging.com/docs/ Printed on 2025/05/18 02:21

 if b"N" in response:
 print("Error in response...")
 return

 # view as bytes
 response_bytes = [byte for byte in response]
 print(f"{response_bytes = } (raw bytes)\n")

 # get the status byte for each axis and skip the first
byte (':')
 status_bytes = [response[i] for i in range(1, len(axes) +
1)]
 print(f"{status_bytes = } (decimal)")

 # create a dictionary that maps uppercase axis names to
status bytes
 status_bytes_dict = {axis.upper(): StatusByte(status_byte)
for (axis, status_byte) in zip(axes, status_bytes, strict=True)}
 print(f"{status_bytes_dict = }\n")

 # check the status of each axis
 for axis in axes:
 status_byte = status_bytes_dict.get(axis.upper())
 # check a single flag
 is_at_upper_limit = StatusByte.AT_UPPER_LIMIT in
status_byte
 # check multiple flags
 is_js_and_axis_enabled = StatusByte.JS_KNOB_ENABLED |
StatusByte.AXIS_ENABLED in status_byte
 # check if one flag is True and the other is False
 is_motor_on_and_not_cmd_move = StatusByte.MOTOR_ACTIVE
in status_byte and StatusByte.COMMANDED_MOVE not in status_byte
 print(f"{axis} Axis Status: {status_byte.value:08b}")
print the status_byte in binary
 print(f"{status_byte = }")
 print(f"{is_at_upper_limit = }")
 print(f"{is_js_and_axis_enabled = }")
 print(f"{is_motor_on_and_not_cmd_move = }\n")

if __name__ == "__main__":
 main()

User String

Python User String

2025/05/18 02:21 5/6 Python Code

Applied Scientific Instrumentation - https://asiimaging.com/docs/

asi_user_string.py

/// script
dependencies = ["pyserial>=3.5"]
///
import serial

def main() -> None:
 # the input string to send to the controller
 user_string = "abcdefghij1234567890"
 save_settings = True

 # use an empty string for MS2000 (card_address = "")
 card_address = "2"

 # error checking
 if len(user_string) > 20:
 raise Exception("Max stored string length is 20.")

 # open the serial port and send characters to the controller
 with serial.Serial("COM4", 115200, timeout=1) as serial_port:
 # clear the current stored string
 serial_port.write(bytes(f"{card_address}BU Y-\r",
encoding="ascii"))
 serial_port.readline()

 # send the input string to the controller
 for character in user_string:
 serial_port.write(bytes(f"{card_address}BU
Y={ord(character)}\r", encoding="ascii"))
 serial_port.readline()

 # print the stored string and check to see if it's the
same as the input string
 serial_port.write(bytes(f"{card_address}BU Y?\r",
encoding="ascii"))
 response = serial_port.readline().decode().rstrip("\r\n")
 if response == user_string:
 print(f"Successfully stored the input string =>
{response}")
 if save_settings:
 serial_port.write(bytes(f"{card_address}SAVESET
Z\r", encoding="ascii"))
 serial_port.readline()
 print("Settings saved to the controller using
SAVESET Z.")
 else:
 print(f"Error: expected {user_string} but got
{response} instead!")

if __name__ == "__main__":

https://asiimaging.com/docs/_export/code/python_code?codeblock=3

Last update: 2025/05/15 03:28 python_code https://asiimaging.com/docs/python_code

https://asiimaging.com/docs/ Printed on 2025/05/18 02:21

 main()

From:
https://asiimaging.com/docs/ - Applied Scientific Instrumentation

Permanent link:
https://asiimaging.com/docs/python_code

Last update: 2025/05/15 03:28

https://asiimaging.com/docs/
https://asiimaging.com/docs/python_code

	Python Code
	Create Button Flag
	Parse Button Flag
	Status Byte
	User String

