2026/01/25 12:29 1/8 Python

Python

Python Homepage - download Python here.
Many users want to interact with ASI devices through Python. There are at least 3 viable options:

1. Send serial commands directly using the pyserial library

2. Use pymmcore package to access the MMCore layer of Micro-Manager where ASI devices have
excellent support

3. Use Pycro-manager to access almost all of Micro-Manager's capability including the MMCore
layer

Via pyserial library

We use the pyserial library and Python 3 in-house. You can install pyserial with “pip install pyserial” in
the terminal. See separate documentation of serial commands, e.g. via the quick start page or
detailed documentation of serial commands.

You can adapt this script to work with Tiger devices, you will need to send the card address before
some serial commands. For example, with a MS2000 you would send m x=1000 y=1000, and on
Tiger you would send 2m x=1000 y=1000 provided the card address for the device is 2.

This script works best when the baud rate is set to 115200.

Here is an example script:
Last tested on Windows 10 64-Bit, Python 3.10.1 64-Bit, and pyserial 3.5.

This class manages the serial connection.

serialport.py

serial Serial

serial SerialException
serial EIGHTBITS

serial PARITY NONE
serial STOPBITS ONE
serial.tools list ports
SerialPort:

A utility class for managing a RS232 serial connection using
the pyserial library.

~_init (self, com port: str, baud rate: int, report: bool
True):
self.serial port = Serial

Applied Scientific Instrumentation - https://asiimaging.com/docs/

https://www.python.org/
https://asiimaging.com/docs/command_quick_start
https://asiimaging.com/docs/products/serial_commands
https://asiimaging.com/docs/_export/code/python?codeblock=0

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

self.com port = com port
self.baud rate = baud rate
user feedback settings
self.report report

self. self.report to console
staticmethod
scan_ports -> list|str]:
"""Returns a sorted list of COM ports."""
com_ports port.device port
list ports.comports
com ports.sort(key value: int(valuel3:
com_ports

connect to serial(self, rx size: int = 12800, tx size: int
12800, read timeout: int = 1, write timeout: int = 1) -> None:

"""Connect to the serial port."""

serial port settings

self.serial port.port self.com port

self.serial port.baudrate = self.baud rate

self.serial port.parity PARITY NONE

self.serial port.bytesize = EIGHTBITS

self.serial port.stopbits = STOPBITS ONE

self.serial port.xonoff = False

self.serial port.rtscts = False

self.serial port.dsrdtr = False

self.serial port.write timeout = write_ timeout

self.serial port.timeout read timeout

set the size of the rx and tx buffers before calling
open
self.serial port.set buffer size(rx size, tx size

try to open the serial port

self.serial port.open
SerialException:
self. f"SerialException: can't connect to
{self.com port} at {self.baud rate}!"

self.is open

clear the rx and tx buffers

self.serial port.reset input buffer

self.serial port.reset output buffer

report connection status to user

self. “Connected to the serial port."

self. f"Serial port = {self.com port} :: Baud
rate = {self.baud rate}"

disconnect from serial(self) -> None:
"""Disconnect from the serial port if it's open.

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

2026/01/25 12:29 3/8 Python

self.is open
self.serial port.close
self. "Disconnected from the serial port."

is open(self) -> bool:
"""Returns True if the serial port exists and is open."""
short circuits if serial port is None

self.serial port self.serial port.is open

report to console(self, message: str) -- None:
"""Print message to the output device, usually the
console. """
useful if we want to output data to something other than
the console (ui element etc)
self.report:
message

send command(self, cmd: bytes) -> None:

"""Send a serial command to the device."""

always reset the buffers before a new command is sent
self.serial port.reset input buffer

self.serial port.reset output buffer

send the serial command to the controller

command bytes(f"{cmd}\r", encoding="ascii"
self.serial port.write(command

self. f"Send: {command.decode(encoding="'ascii')}"

read response(self) -- str:
"""Read a line from the serial response."""
response = self.serial port.readline
response response.decode(encoding="ascii"
self. f"Recv: {response.strip()}"
response # in case we want to read the response

The MS2000 class is a subclass of SerialPort and adds input validation to the constructor.

ms2k.py
serialport SerialPort

MS2000 (SerialPort
A utility class for operating the MS2000 from Applied
Scientific Instrumentation.

Move commands use ASI units: 1 unit = 1/10 of a micron.
Example: to move a stage 1 mm on the x axis, use
self.moverel(10000)

Applied Scientific Instrumentation - https://asiimaging.com/docs/

https://asiimaging.com/docs/_export/code/python?codeblock=1

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

Manual:
http://asiimaging.com/docs/products/ms2000

all valid baud rates for the MS2000
these rates are controlled by dip switches
BAUD RATES 9600, 19200, 28800, 115200

~ init (self, com port: str, baud rate: int-=115200
report: str-True):
super(). 1init (com port, baud rate, report
validate baud rate input
baud rate self.BAUD RATES:
self.baud rate = baud rate

ValueError("The baud rate is not valid. Valid
rates: 9600, 19200, 28800, or 115200."

s #
MS2000 Serial Commands
e e e e #

moverel (self, x: int=0, y: int=0, z: int=0) -> None:

"""Move the stage with a relative move."""
self.send command(f"MOVREL X={x} Y={y} Z={z}\r"
self.read response

moverel axis(self, axis: str, distance: int) -> None:
"""Move the stage with a relative move."""

self.send command(f"MOVREL {axis}={distance}\r"
self.read response

move (self, x: int-=0, y: int-=0, z: int=0) -> None:
"""Move the stage with an absolute move."""
self.send command(f"MOVE X={x} Y={y} Z={z}\r"
self.read response

move axis(self, axis: str, distance: int) -> None:
“""Move the stage with an absolute move."""
self.send command(f"MOVE {axis}={distance}\r"
self.read response

set max speed(self, axis: str, speed:int) -> None:

"""Set the speed on a specific axis. Speed is in mm/s."""
self.send command(f"SPEED {axis}={speed}\r"

self.read response

get position(self, axis: str) -> int:
"""Return the position of the stage in ASI units (tenths

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

2026/01/25 12:29 5/8

Python

of microns)."""
self.send command(f"WHERE {axis}\r"
response = self.read response
int(response.split(" ")[1

get position um(self, axis: str) -- float:

"""Return the position of the stage in microns."""

self.send command(f"WHERE {axis}\r"
response self.read response

float (response.split(" ")[1]1)/10.0
Y o s s e s e s e e = #
MS2000 Utility Functions
R #
is axis busy(self, axis: str) -> bool:

"""Returns True if the axis is busy."""
self.send command(f"RS {axis}?\r"
“B" self.read response

is device busy(self) -- bool:
"""Returns True if any axis is busy."""
self.send command("/"

"B" self.read response

wait for device(self, report: bool - False

"""Waits for the all motors to stop moving.

report:
"Waiting for device..."

temp = self.report
self.report report
busy = True

busy:

busy = self.is device busy

self.report = temp

And using the class in a script:

main.py
ms2k MS2000

main
scan system for com ports
f"COM Ports: {MS2000.scan ports()}"

connect to the MS2000
ms2k MS2000("COM9", 115200

-> None:

Applied Scientific Instrumentation - https://asiimaging.com/docs/

https://asiimaging.com/docs/_export/code/python?codeblock=2

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

ms2k.connect to serial
ms2k.1is open
"Exiting the program..."

move the stage
ms2k.moverel
ms2k.wait for device
ms2k.moverel
ms2k.wait for device
ms2k.moverel(-
ms2k.wait for device
ms2k.moverel -
ms2k.wait for device

close the serial port
ms2k.disconnect from serial

__hame __main_ ":

main

Note: Make sure you enter the correct COM port and baud rate in the constructor for the MS2000
class.

Via pymmcore

See the pymmcore GitHub page for information.

Micro-Manager has excellent support for ASI devices built via “device adapters” which are part of the
MMCore layer of Micro-Manager which are exposed in Python using the pymmcore library. You can
use Micro-Manager's hardware control APIs (e.g. to move stages) and also Micro-Manager's device
properties. These properties include a mechanism for sending arbitrary serial commands.

To run the example below, you will need to make a configuration file using the Hardware
Configuration Wizard. You can use either the ASITiger or ASIStage device adapter and add
the XYStage to your hardware configuration. Save the configuration file as pymmcore test.cfg.

An example script to control an XYStage

pymmcore
0s

main

hardware cfg "pymmcore test.cfg"

mm directory "C:/Program Files/Micro-Manager-2.0"

version info = pymmcore.CMMCore().getAPIVersionInfo

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

https://github.com/micro-manager/pymmcore

2026/01/25 12:29 7/8 Python

version info

mmc pymmcore.CMMCore
mmc.getVersionInfo

load the device adapters

mmc . setDeviceAdapterSearchPaths([mm directory

mmc . LoadSystemConfiguration(os.path.join(mm directory
hardware cfg

get the stage device name
Xy stage = mmc.getXYStageDevice
f"XYStage Device: {xy stage}"

move the xy stage
mmc . setRelativeXYPosition (10000, 0O
mmc.waitForDevice(xy stage

mmc.setRelativeXYPosition(0O, 10000
mmc.waitForDevice(xy stage

mmc.setRelativeXYPosition(-10000, 0
mmc.waitForDevice(xy stage

mmc.setRelativeXYPosition (0, -10000
mmc.waitForDevice(xy stage

__name __main_ ":

main

Via Pycro-Manager

See Pycro-Manager documentation.

Micro-Manager which has excellent support for ASI devices built in. Using Pycro-Manager is especially
valuable if you also have non-ASI devices to control that are supported in Micro-Manager. Instead of
sending serial commands directly you use Micro-Manager's hardware control APIs (e.g. to move
stages) and also Micro-Manager's device properties. These properties include a mechanism for
sending arbitrary serial commands.

python, serial

Applied Scientific Instrumentation - https://asiimaging.com/docs/

https://pycro-manager.readthedocs.io/en/latest/
https://asiimaging.com/docs/tag/python?do=showtag&tag=python
https://asiimaging.com/docs/tag/serial?do=showtag&tag=serial

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

From:
https://asiimaging.com/docs/ - Applied Scientific Instrumentation

Permanent link:
https://asiimaging.com/docs/python

Last update: 2023/08/15 14:06

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

https://asiimaging.com/docs/
https://asiimaging.com/docs/python

	Python
	Via pyserial library
	Via pymmcore
	Via Pycro-Manager

