
2026/01/25 12:29 1/8 Python

Applied Scientific Instrumentation - https://asiimaging.com/docs/

Python

Python Homepage - download Python here.

Many users want to interact with ASI devices through Python. There are at least 3 viable options:

Send serial commands directly using the pyserial library1.
Use pymmcore package to access the MMCore layer of Micro-Manager where ASI devices have2.
excellent support
Use Pycro-manager to access almost all of Micro-Manager's capability including the MMCore3.
layer

Via pyserial library

We use the pyserial library and Python 3 in-house. You can install pyserial with “pip install pyserial” in
the terminal. See separate documentation of serial commands, e.g. via the quick start page or
detailed documentation of serial commands.

You can adapt this script to work with Tiger devices, you will need to send the card address before
some serial commands. For example, with a MS2000 you would send m x=1000 y=1000, and on
Tiger you would send 2m x=1000 y=1000 provided the card address for the device is 2.

This script works best when the baud rate is set to 115200.

Here is an example script:
Last tested on Windows 10 64-Bit, Python 3.10.1 64-Bit, and pyserial 3.5.

This class manages the serial connection.

serialport.py

from serial import Serial
from serial import SerialException
from serial import EIGHTBITS
from serial import PARITY_NONE
from serial import STOPBITS_ONE
from serial.tools import list_ports

class SerialPort:
 """
 A utility class for managing a RS232 serial connection using
the pyserial library.

 """

 def __init__(self, com_port: str, baud_rate: int, report: bool
= True):
 self.serial_port = Serial()

https://www.python.org/
https://asiimaging.com/docs/command_quick_start
https://asiimaging.com/docs/products/serial_commands
https://asiimaging.com/docs/_export/code/python?codeblock=0

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

 self.com_port = com_port
 self.baud_rate = baud_rate
 # user feedback settings
 self.report = report
 self.print = self.report_to_console

 @staticmethod
 def scan_ports() -> list[str]:
 """Returns a sorted list of COM ports."""
 com_ports = [port.device for port in
list_ports.comports()]
 com_ports.sort(key=lambda value: int(value[3:]))
 return com_ports

 def connect_to_serial(self, rx_size: int = 12800, tx_size: int
= 12800, read_timeout: int = 1, write_timeout: int = 1) -> None:
 """Connect to the serial port."""
 # serial port settings
 self.serial_port.port = self.com_port
 self.serial_port.baudrate = self.baud_rate
 self.serial_port.parity = PARITY_NONE
 self.serial_port.bytesize = EIGHTBITS
 self.serial_port.stopbits = STOPBITS_ONE
 self.serial_port.xonoff = False
 self.serial_port.rtscts = False
 self.serial_port.dsrdtr = False
 self.serial_port.write_timeout = write_timeout
 self.serial_port.timeout = read_timeout

 # set the size of the rx and tx buffers before calling
open
 self.serial_port.set_buffer_size(rx_size, tx_size)

 # try to open the serial port
 try:
 self.serial_port.open()
 except SerialException:
 self.print(f"SerialException: can't connect to
{self.com_port} at {self.baud_rate}!")

 if self.is_open():
 # clear the rx and tx buffers
 self.serial_port.reset_input_buffer()
 self.serial_port.reset_output_buffer()
 # report connection status to user
 self.print("Connected to the serial port.")
 self.print(f"Serial port = {self.com_port} :: Baud
rate = {self.baud_rate}")

 def disconnect_from_serial(self) -> None:
 """Disconnect from the serial port if it's open."""

2026/01/25 12:29 3/8 Python

Applied Scientific Instrumentation - https://asiimaging.com/docs/

 if self.is_open():
 self.serial_port.close()
 self.print("Disconnected from the serial port.")

 def is_open(self) -> bool:
 """Returns True if the serial port exists and is open."""
 # short circuits if serial port is None
 return self.serial_port and self.serial_port.is_open

 def report_to_console(self, message: str) -> None:
 """Print message to the output device, usually the
console."""
 # useful if we want to output data to something other than
the console (ui element etc)
 if self.report:
 print(message)

 def send_command(self, cmd: bytes) -> None:
 """Send a serial command to the device."""
 # always reset the buffers before a new command is sent
 self.serial_port.reset_input_buffer()
 self.serial_port.reset_output_buffer()
 # send the serial command to the controller
 command = bytes(f"{cmd}\r", encoding="ascii")
 self.serial_port.write(command)
 self.print(f"Send: {command.decode(encoding='ascii')}")

 def read_response(self) -> str:
 """Read a line from the serial response."""
 response = self.serial_port.readline()
 response = response.decode(encoding="ascii")
 self.print(f"Recv: {response.strip()}")
 return response # in case we want to read the response

The MS2000 class is a subclass of SerialPort and adds input validation to the constructor.

ms2k.py

from serialport import SerialPort

class MS2000(SerialPort):
 """
 A utility class for operating the MS2000 from Applied
Scientific Instrumentation.

 Move commands use ASI units: 1 unit = 1/10 of a micron.
 Example: to move a stage 1 mm on the x axis, use
self.moverel(10000)

https://asiimaging.com/docs/_export/code/python?codeblock=1

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

 Manual:
 http://asiimaging.com/docs/products/ms2000

 """

 # all valid baud rates for the MS2000
 # these rates are controlled by dip switches
 BAUD_RATES = [9600, 19200, 28800, 115200]

 def __init__(self, com_port: str, baud_rate: int=115200,
report: str=True):
 super().__init__(com_port, baud_rate, report)
 # validate baud_rate input
 if baud_rate in self.BAUD_RATES:
 self.baud_rate = baud_rate
 else:
 raise ValueError("The baud rate is not valid. Valid
rates: 9600, 19200, 28800, or 115200.")

 # ------------------------------ #
 # MS2000 Serial Commands #
 # ------------------------------ #

 def moverel(self, x: int=0, y: int=0, z: int=0) -> None:
 """Move the stage with a relative move."""
 self.send_command(f"MOVREL X={x} Y={y} Z={z}\r")
 self.read_response()

 def moverel_axis(self, axis: str, distance: int) -> None:
 """Move the stage with a relative move."""
 self.send_command(f"MOVREL {axis}={distance}\r")
 self.read_response()

 def move(self, x: int=0, y: int=0, z: int=0) -> None:
 """Move the stage with an absolute move."""
 self.send_command(f"MOVE X={x} Y={y} Z={z}\r")
 self.read_response()

 def move_axis(self, axis: str, distance: int) -> None:
 """Move the stage with an absolute move."""
 self.send_command(f"MOVE {axis}={distance}\r")
 self.read_response()

 def set_max_speed(self, axis: str, speed:int) -> None:
 """Set the speed on a specific axis. Speed is in mm/s."""
 self.send_command(f"SPEED {axis}={speed}\r")
 self.read_response()

 def get_position(self, axis: str) -> int:
 """Return the position of the stage in ASI units (tenths

2026/01/25 12:29 5/8 Python

Applied Scientific Instrumentation - https://asiimaging.com/docs/

of microns)."""
 self.send_command(f"WHERE {axis}\r")
 response = self.read_response()
 return int(response.split(" ")[1])

 def get_position_um(self, axis: str) -> float:
 """Return the position of the stage in microns."""
 self.send_command(f"WHERE {axis}\r")
 response = self.read_response()
 return float(response.split(" ")[1])/10.0

 # ------------------------------ #
 # MS2000 Utility Functions #
 # ------------------------------ #

 def is_axis_busy(self, axis: str) -> bool:
 """Returns True if the axis is busy."""
 self.send_command(f"RS {axis}?\r")
 return "B" in self.read_response()

 def is_device_busy(self) -> bool:
 """Returns True if any axis is busy."""
 self.send_command("/")
 return "B" in self.read_response()

 def wait_for_device(self, report: bool = False) -> None:
 """Waits for the all motors to stop moving."""
 if not report:
 print("Waiting for device...")
 temp = self.report
 self.report = report
 busy = True
 while busy:
 busy = self.is_device_busy()
 self.report = temp

And using the class in a script:

main.py

from ms2k import MS2000

def main():
 # scan system for com ports
 print(f"COM Ports: {MS2000.scan_ports()}")

 # connect to the MS2000
 ms2k = MS2000("COM9", 115200)

https://asiimaging.com/docs/_export/code/python?codeblock=2

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

 ms2k.connect_to_serial()
 if not ms2k.is_open():
 print("Exiting the program...")
 return

 # move the stage
 ms2k.moverel(10000, 0)
 ms2k.wait_for_device()
 ms2k.moverel(0, 10000)
 ms2k.wait_for_device()
 ms2k.moverel(-10000, 0)
 ms2k.wait_for_device()
 ms2k.moverel(0, -10000)
 ms2k.wait_for_device()

 # close the serial port
 ms2k.disconnect_from_serial()

if __name__ == "__main__":
 main()

Note: Make sure you enter the correct COM port and baud rate in the constructor for the MS2000
class.

Via pymmcore

See the pymmcore GitHub page for information.

Micro-Manager has excellent support for ASI devices built via “device adapters” which are part of the
MMCore layer of Micro-Manager which are exposed in Python using the pymmcore library. You can
use Micro-Manager's hardware control APIs (e.g. to move stages) and also Micro-Manager's device
properties. These properties include a mechanism for sending arbitrary serial commands.

To run the example below, you will need to make a configuration file using the Hardware
Configuration Wizard. You can use either the ASITiger or ASIStage device adapter and add
the XYStage to your hardware configuration. Save the configuration file as pymmcore_test.cfg.

An example script to control an XYStage

import pymmcore
import os

def main():
 hardware_cfg = "pymmcore_test.cfg"
 mm_directory = "C:/Program Files/Micro-Manager-2.0"

 version_info = pymmcore.CMMCore().getAPIVersionInfo()

https://github.com/micro-manager/pymmcore

2026/01/25 12:29 7/8 Python

Applied Scientific Instrumentation - https://asiimaging.com/docs/

 print(version_info)

 mmc = pymmcore.CMMCore()
 print(mmc.getVersionInfo())

 # load the device adapters
 mmc.setDeviceAdapterSearchPaths([mm_directory])
 mmc.loadSystemConfiguration(os.path.join(mm_directory,
hardware_cfg))

 # get the stage device name
 xy_stage = mmc.getXYStageDevice()
 print(f"XYStage Device: {xy_stage}")

 # move the xy stage
 mmc.setRelativeXYPosition(10000, 0)
 mmc.waitForDevice(xy_stage)

 mmc.setRelativeXYPosition(0, 10000)
 mmc.waitForDevice(xy_stage)

 mmc.setRelativeXYPosition(-10000, 0)
 mmc.waitForDevice(xy_stage)

 mmc.setRelativeXYPosition(0, -10000)
 mmc.waitForDevice(xy_stage)

if __name__ == "__main__":
 main()

Via Pycro-Manager

See Pycro-Manager documentation.

Micro-Manager which has excellent support for ASI devices built in. Using Pycro-Manager is especially
valuable if you also have non-ASI devices to control that are supported in Micro-Manager. Instead of
sending serial commands directly you use Micro-Manager's hardware control APIs (e.g. to move
stages) and also Micro-Manager's device properties. These properties include a mechanism for
sending arbitrary serial commands.

python, serial

https://pycro-manager.readthedocs.io/en/latest/
https://asiimaging.com/docs/tag/python?do=showtag&tag=python
https://asiimaging.com/docs/tag/serial?do=showtag&tag=serial

Last update: 2023/08/15 14:06 python https://asiimaging.com/docs/python

https://asiimaging.com/docs/ Printed on 2026/01/25 12:29

From:
https://asiimaging.com/docs/ - Applied Scientific Instrumentation

Permanent link:
https://asiimaging.com/docs/python

Last update: 2023/08/15 14:06

https://asiimaging.com/docs/
https://asiimaging.com/docs/python

	Python
	Via pyserial library
	Via pymmcore
	Via Pycro-Manager

