
2026/01/26 15:35 1/5 Command:EXTRA (EX)

Applied Scientific Instrumentation - https://www.asiimaging.com/docs/

Command:EXTRA (EX)

MS2000 and RM2000 Syntax
Shortcut EX version 9.53
Format EXTRA [X?] [Y?] [Z=lock_ki] [M=button_code] [R=small_enc] [T?]
Remembered Using SS Z

Tiger Syntax
Shortcut EX version 3.51
Format [Addr#]EXTRA [X?] [Y?] [Z=lock_ki] [M=button_code] [R=small_enc] [T?]
Type Card-Addressed
Remembered Using [Addr#]SS Z

X? Provides the CRISP bottom line string as is shown on the LCD display.

Y? Returns the SNR value shown on the LCD after log amp calibration.

The Z argument sets the integral error servo parameter. The default is 1. Higher values may improve
speed settling but can also generate instability. Use sparingly.

This is also the lock_ki value for CRISP. When CRISP enters the lock state (LK F=83) it changes
the KI Z value for the Z axis. KI Z is restored to the initial value when CRISP enters the stop state
(LK F=79).

When CRISP restores KI Z after using lock_ki, it uses a saved value that is set only
once when the controller powers on. If you want to change KI Z, use SS Z and
power cycle the controller so that it can restore KI Z to the correct value. It is not
recommended to set KI Z unless you are an advanced user.

MS-2000 9.2p or Tiger v3.42 required
T?: The controller detects the resolution of the ADC during initialization.

Code DAC CPU
0 10-bit ADC C8051F122
1 12-bit ADC C8051F120

MS-2000 9.2n or Tiger v3.36 required
M? Returns the button_flag_byte and resets the value to 0.

M=# Modify the button_flag_byte with the button code and call the button functions associated
with that code.

This command differs from BE F which does not modify the button_flag_byte and only calls a
single button function.

https://www.asiimaging.com/docs/commands/ki
https://www.asiimaging.com/docs/commands/saveset
https://www.asiimaging.com/docs/commands/benable

Last update: 2025/05/28 15:11 commands:extra https://www.asiimaging.com/docs/commands/extra

https://www.asiimaging.com/docs/ Printed on 2026/01/26 15:35

Additional Details About M?
The button_flag_byte stores the state of the last detected button press for each button.
When the controller is powered on, the value is initialized to 0. As the user presses buttons the
value of the button_flag_byte changes, it is important to note that this value only changes
when you release the button.

After receiving the EXTRA M? command, the internal value on the controller is reset to 0,
enabling you to detect new button presses.

If a button has already been pressed, and then is pressed again, the new state overwrites the
old state for that button. Example: if you do a Normal Press and then a Long Press on the
Joystick Button, the next time you send the “EXTRA M?” command the state of the
Joystick Button will be Long Press.

Zero/Halt button presses only have the states 0 and 1. (Not Pressed and Normal
Press)

The button_flag_byte is divided into four 2-bit sections that each contain the state of a
button:

Bits Button
1-2 @ Button
3-4 Home Button
5-6 Joystick Button
7-8 Zero/Halt Button

Each 2-bit section can take on the values 0-3, these codes represent the state of the button.

Decimal Binary State
0 00 Not Pressed
1 01 Normal Press
2 10 Long Press
3 11 Extra Long Press

Example:

@ Button Normal Press1.
Home Button Long Press2.
Joystick Extra Long Press3.
Zero/Halt Normal Press4.
Send serial command EXTRA M?5.

Results of steps 1-5 in binary:

button_flag_byte = 00 00 00 011.
button_flag_byte = 00 00 10 012.
button_flag_byte = 00 11 10 013.
button_flag_byte = 01 11 10 014.
button_flag_byte = 00 00 00 00 (serial command reset)5.

2026/01/26 15:35 3/5 Command:EXTRA (EX)

Applied Scientific Instrumentation - https://www.asiimaging.com/docs/

Example Python code for extracting button states from the button_flag_byte:

Python Parse Button Flag

asi_parse_button_flag.py

the value returned from EXTRA M?
button_flag_byte = 127

bit masks
mask_at = 0x03 # 00000011
mask_home = 0x0C # 00001100
mask_js = 0x30 # 00110000
mask_zero = 0xC0 # 11000000

get the button states from button_flag_byte
btn_at = button_flag_byte & mask_at
btn_home = (button_flag_byte & mask_home) >> 2
btn_js = (button_flag_byte & mask_js) >> 4
btn_zero = (button_flag_byte & mask_zero) >> 6

show the results in decimal and binary
print(f"{button_flag_byte = } (binary {button_flag_byte :08b})")
print(f"{btn_at = } (binary {btn_at:02b})")
print(f"{btn_home = } (binary {btn_home:02b})")
print(f"{btn_js = } (binary {btn_js:02b})")
print(f"{btn_zero = } (binary {btn_zero:02b})")

console output:
button_flag_byte = 127 (binary 01111111)
btn_at = 3 (binary 11)
btn_home = 3 (binary 11)
btn_js = 3 (binary 11)
btn_zero = 1 (binary 01)

Additional Details About M=button_code
This function allows you to simulate button presses programmatically through a serial
command.

This command modifies the button_flag_byte and calls the button functions associated with
that button code.

The button codes are the same values that are returned by EXTRA M?. The input value is
clamped to the range: 0-127.

If a button code represents multiple button presses then the button functions will be called in

https://www.asiimaging.com/docs/_export/code/commands/extra?codeblock=0

Last update: 2025/05/28 15:11 commands:extra https://www.asiimaging.com/docs/commands/extra

https://www.asiimaging.com/docs/ Printed on 2026/01/26 15:35

the order ⇒
@, Home, Joystick, Zero/Halt (LSB ⇒ MSB)

You can expect the same behavior as if you were pressing physical buttons ⇒

Send the command EXTRA M=3: button_flag_byte = 3, @ Extra Long Press button1.
function called.
Send the command EXTRA M=1: button_flag_byte = 1, @ Normal Press button2.
function called.
Send the command EXTRA M=5: button_flag_byte = 5, @ Normal Press and Home3.
Normal Press button functions called.

This demonstrates that button presses are overwritten as if you were interacting with the
physical controller pressing buttons.

Example Python code for creating a button_flag_byte:

Python Create Button Flag

asi_create_button_flag.py

def create_button_code(at: int = 0, home: int = 0, joystick: int =
0, zero_halt: int = 0) -> int:
 assert at in range(4), "Must be in the range 0-3."
 assert home in range(4), "Must be in the range 0-3."
 assert joystick in range(4), "Must be in the range 0-3."
 assert zero_halt == 0 or zero_halt == 1, "Must be 0 or 1."

 button_code = 0

 # bit masks
 BITMASK_AT = 0x03 # 00000011
 BITMASK_HOME = 0x0C # 00001100
 BITMASK_JS = 0x30 # 00110000
 BITMASK_ZERO = 0xC0 # 11000000

 # set bits
 button_code &= ~BITMASK_AT
 button_code |= at & BITMASK_AT

 button_code &= ~BITMASK_HOME
 button_code |= (home << 2) & BITMASK_HOME

 button_code &= ~BITMASK_JS
 button_code |= (joystick << 4) & BITMASK_JS

 button_code &= ~BITMASK_ZERO
 button_code |= (zero_halt << 6) & BITMASK_ZERO

https://www.asiimaging.com/docs/_export/code/commands/extra?codeblock=1

2026/01/26 15:35 5/5 Command:EXTRA (EX)

Applied Scientific Instrumentation - https://www.asiimaging.com/docs/

 return button_code

def main():
 button_code = create_button_code(at=1, home=1)
 print(button_code)
 # prints 5

if __name__ == "__main__":
 main()

commands, tiger, ms2000, crisp

From:
https://www.asiimaging.com/docs/ - Applied Scientific Instrumentation

Permanent link:
https://www.asiimaging.com/docs/commands/extra

Last update: 2025/05/28 15:11

https://www.asiimaging.com/docs/tag/commands?do=showtag&tag=commands
https://www.asiimaging.com/docs/tag/tiger?do=showtag&tag=tiger
https://www.asiimaging.com/docs/tag/ms2000?do=showtag&tag=ms2000
https://www.asiimaging.com/docs/tag/crisp?do=showtag&tag=crisp
https://www.asiimaging.com/docs/
https://www.asiimaging.com/docs/commands/extra

	Command:EXTRA (EX)

