2026/01/26 15:35 1/5 Command:EXTRA (EX)

Command:EXTRA (EX)

MS2000 and RM2000 Syntax

Shortcut EX version 9.53

Format EXTRA [X?] [Y?] [Z=lock_ki] [M=button_code] [R=small_enc] [T?]
Remembered|Using SS Z

Tiger Syntax
Shortcut EX version 3.51
Format [Addr#]EXTRA [X?]1[Y?] [Z=lock _ki] [M=button_code] [R=small_enc] [T?]
Type Card-Addressed
Remembered|Using [Addr#]SS Z

X? Provides the CRISP bottom line string as is shown on the LCD display.
Y? Returns the SNR value shown on the LCD after log amp calibration.

The Z argument sets the integral error servo parameter. The default is 1. Higher values may improve
speed settling but can also generate instability. Use sparingly.

This is also the Llock ki value for CRISP. When CRISP enters the lock state (LK F=83) it changes
the KI Z value for the Z axis. KI Z is restored to the initial value when CRISP enters the stop state
(LK F=79).

When CRISP restores Kl Z after using lock ki, it uses a saved value that is set only

@ once when the controller powers on. If you want to change Kl Z, use SS Z and
power cycle the controller so that it can restore Kl Z to the correct value. It is not
recommended to set Kl Z unless you are an advanced user.

MS-2000 9.2p or Tiger v3.42 required
T?: The controller detects the resolution of the ADC during initialization.

Code|DAC CPU
0 10-bit ADC|C8051F122
1 12-bit ADC|C8051F120

MS-2000 9.2n or Tiger v3.36 required
M? Returns the button flag byte and resets the value to 0.

M=# Modify the button flag byte with the button code and call the button functions associated
with that code.

This command differs from BE F which does not modify the button flag byte and only calls a
single button function.

Applied Scientific Instrumentation - https://www.asiimaging.com/docs/

https://www.asiimaging.com/docs/commands/ki
https://www.asiimaging.com/docs/commands/saveset
https://www.asiimaging.com/docs/commands/benable

Last update: 2025/05/28 15:11 commands:extra https://www.asiimaging.com/docs/commands/extra

Additional Details About M?
The button flag byte stores the state of the last detected button press for each button.
When the controller is powered on, the value is initialized to 0. As the user presses buttons the
value of the button_ flag byte changes, it is important to note that this value only changes
when you release the button.

After receiving the EXTRA M? command, the internal value on the controller is reset to 0,
enabling you to detect new button presses.

If a button has already been pressed, and then is pressed again, the new state overwrites the
old state for that button. Example: if you do a Normal Press and then a Long Press on the
Joystick Button, the next time you send the “EXTRA M?” command the state of the
Joystick Button will be Long Press.

Zero/Halt button presses only have the states 0 and 1. (Not Pressed and Normal
Press)

The button_ flag byte is divided into four 2-bit sections that each contain the state of a
button:

Bits [Button

1-2 |@ Button

3-4 |Home Button
5-6 |Joystick Button
7-8 |Zero/Halt Button

Each 2-bit section can take on the values 0- 3, these codes represent the state of the button.

Decimal|Binary State
0 00 Not Pressed
1 01 Normal Press
2 10 Long Press
3 11 Extra Long Press
Example:
1. @ Button Normal Press
2. Home Button Long Press
3. Joystick Extra Long Press
4. Zero/Halt Normal Press
5. Send serial command EXTRA M?

Results of steps 1-5 in binary:

1. button flag byte = 00 00 00 01
2. button flag byte = 00 00 10 01
3. button flag byte = 00 11 10 01
4. button flag byte = 01 11 10 01
5. button_flag byte = 00 00 00 00 (serial command reset)

https://www.asiimaging.com/docs/ Printed on 2026/01/26 15:35

2026/01/26 15:35 3/5 Command:EXTRA (EX)

Example Python code for extracting button states from the button flag_byte:

Python Parse Button Flag

asi_parse_button flag.py

the value returned from EXTRA M?
button flag byte = 127

bit masks

mask at 0x03 # 00000011
mask _home = 0Ox0C # 00001100
mask js 0x30 # 00110000

mask zero = 0xCO # 11000000

get the button states from button flag byte

btn at button flag byte & mask at

btn _home button flag byte & mask home 2
btn js button flag byte & mask js 4
btn zero button flag byte & mask zero 6

show the results in decimal and binary
f"{button flag byte = } (binary {button flag byte :08b})"
f"{btn at = } (binary {btn _at:02b})"

f*{btn home = } (binary {btn home:02b})"
f"{btn js = } (binary {btn js:02b})"
f"{btn zero = } (binary {btn zero:02b})"

console output:
button flag byte = 127 (binary 01111111)
btn at = 3 (binary 11)

H R K H R R

btn home = 3 (binary 11)
btn js = 3 (binary 11)
btn zero = 1 (binary 01)

Additional Details About M=button_code
This function allows you to simulate button presses programmatically through a serial
command.

This command modifies the button flag byte and calls the button functions associated with
that button code.

The button codes are the same values that are returned by EXTRA M?. The input value is
clamped to the range: 0-127.

If a button code represents multiple button presses then the button functions will be called in

Applied Scientific Instrumentation - https://www.asiimaging.com/docs/

https://www.asiimaging.com/docs/_export/code/commands/extra?codeblock=0

Last update: 2025/05/28 15:11 commands:extra https://www.asiimaging.com/docs/commands/extra

the order =
@, Home, Joystick, Zero/Halt (LSB = MSB)

You can expect the same behavior as if you were pressing physical buttons =

1. Send the command EXTRA M=3: button flag byte = 3, @ Extra Long Press button
function called.

2. Send the command EXTRA M=1: button flag byte =1, @ Normal Press button
function called.

3. Send the command EXTRA M=5: button flag byte =5, @ Normal Press and Home
Normal Press button functions called.

This demonstrates that button presses are overwritten as if you were interacting with the
physical controller pressing buttons.

Example Python code for creating a button_flag_byte:

Python Create Button Flag

asi_create_button_flag.py

create button code(at: int home: int joystick: int
zero_halt: int -> int:
at range "Must be in the range 0-3."
home range "Must be in the range 0-3."
joystick range "Must be in the range 0-3."
zero_halt zero_halt "Must be 0 or 1."

button code

bit masks

BITMASK AT # 00000011
BITMASK HOME # 00001100
BITMASK JS # 00110000
BITMASK ZERO # 11000000
set bits

button code &= ~BITMASK AT
button code |= at & BITMASK AT

button code & ~BITMASK HOME
button code | home & BITMASK HOME

button code & ~BITMASK JS
button code | joystick & BITMASK JS

button code & ~BITMASK ZERO
button code | zero halt & BITMASK ZERO

https://www.asiimaging.com/docs/ Printed on 2026/01/26 15:35

https://www.asiimaging.com/docs/_export/code/commands/extra?codeblock=1

2026/01/26 15:35 5/5 Command:EXTRA (EX)

button code

main
button code = create button code(at home
button code
prints 5
__hame " main_ ":
main

commands, tiger, ms2000, crisp

From:
https://www.asiimaging.com/docs/ - Applied Scientific Instrumentation

Permanent link:
https://www.asiimaging.com/docs/commands/extra

Last update: 2025/05/28 15:11

Applied Scientific Instrumentation - https://www.asiimaging.com/docs/

https://www.asiimaging.com/docs/tag/commands?do=showtag&tag=commands
https://www.asiimaging.com/docs/tag/tiger?do=showtag&tag=tiger
https://www.asiimaging.com/docs/tag/ms2000?do=showtag&tag=ms2000
https://www.asiimaging.com/docs/tag/crisp?do=showtag&tag=crisp
https://www.asiimaging.com/docs/
https://www.asiimaging.com/docs/commands/extra

	Command:EXTRA (EX)

